Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
ACS Omega ; 9(17): 19311-19319, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38708238

RESUMEN

Traditional Chinese medicine (TCM) formula decoctions easily form nanoaggregates due to self-assembly during the decoction process. However, research on nanoaggregates in TCM is still in its infancy with limited systematic studies. Maxing Shigan Decoction (MXSGT), a TCM formula, has been commonly used for the treatment of fever for thousands of years in China. This study used MXSGT as an example to investigate the antipyretic effects of MXSGT nanoaggregates (MXSGT-NAs) in its decoction, shedding light on the compatibility mechanisms of Chinese medicine. MXSGT-NAs were isolated by using high-speed centrifugation and dialysis techniques. The morphology, particle size distribution, and electrical potential of MXSGT-NAs were characterized. High-performance liquid chromatography (HPLC) was used to detect ephedrine and pseudoephedrine in MXSGT-NAs. The self-assembly mechanism of MXSGT-NAs was investigated by deconstructing the prescription. In pharmacodynamic experiments, a rat fever model was established through the subcutaneous injection of dry yeast to investigate the antipyretic effects of MXSGT-NAs. The results showed the presence of regularly shaped spherical nanoaggregates in MXSGT. It contains carbon, oxygen (O), sulfur (S), sodium, aluminum (Al), calcium (Ca), iron, magnesium, bismuth (Bi), etc. MXSGT-NAs exerted substantial antipyretic effects on febrile rats. Furthermore, we found micrometer-sized particles composed of Ca, O, S, potassium, and Bi in Shi gao decoctions. This study is the first to provide evidence for the self-assembling property of Shi gao, elucidate the scientific connotation of dispensing Shi gao in MXSGT, and provide a novel perspective for the study of TCM decoctions.

2.
Nat Food ; 5(1): 72-82, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177223

RESUMEN

Dietary exposure to methylmercury (MeHg) causes irreversible damage to human cognition and is mitigated by photolysis and microbial demethylation of MeHg. Rice (Oryza sativa L.) has been identified as a major dietary source of MeHg. However, it remains unknown what drives the process within plants for MeHg to make its way from soils to rice and the subsequent human dietary exposure to Hg. Here we report a hidden pathway of MeHg demethylation independent of light and microorganisms in rice plants. This natural pathway is driven by reactive oxygen species generated in vivo, rapidly transforming MeHg to inorganic Hg and then eliminating Hg from plants as gaseous Hg°. MeHg concentrations in rice grains would increase by 2.4- to 4.7-fold without this pathway, which equates to intelligence quotient losses of 0.01-0.51 points per newborn in major rice-consuming countries, corresponding to annual economic losses of US$30.7-84.2 billion globally. This discovered pathway effectively removes Hg from human food webs, playing an important role in exposure mitigation and global Hg cycling.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Recién Nacido , Humanos , Mercurio/metabolismo , Oryza/metabolismo , Cadena Alimentaria , Compuestos de Metilmercurio/metabolismo , Desmetilación
3.
Environ Pollut ; 344: 123371, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266694

RESUMEN

Accurately predicting air pollutants, especially in urban areas with well-defined spatial structures, is crucial. Over the past decade, machine learning techniques have been widely used to forecast urban air quality. However, traditional machine learning approaches have limitations in accuracy and interpretability for predicting pollutants. In this study, we propose a convolutional neural network (CNN) model to predict the spatial distribution of CO concentration in Nanjing urban area at 10 m resolution. Our model incorporates various factors as input, such as building height, topography, emissions, and is trained against the outputs simulated by the parallelized large-eddy simulation model (PALM). The PALM model has 48 different scenarios that varied in emissions, wind speeds, and wind directions. The results display a strong consistency between the two models. Furthermore, we evaluate the performance of our model using a 10-fold cross-validation and out-of-sample cross-validation approach. This yields a robust correlation (with both R2 > 0.8) and a low RMSE between the CO predicted by the PALM and CNN models, which demonstrates the generalization capability of our CNN model. The CNN can extract crucial features from the resulted weight contribution map. This map indicates that the CO concentration at a location is more influenced by nearby buildings and emissions than distant ones. The interpretable patterns uncovered by our model are related to neighborhood effects, wind speeds, directions, and the impact of orientation on urban CO distribution. The model also shows high prediction accuracy (R > 0.8) when applied to another city. Overall, the integration of our CNN framework with the PALM model enhances the accuracy of air quality predictions, while enabling a fluid dynamic laws interpretation, providing effective tools for air quality management.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Ciudades , Simulación por Computador , Aprendizaje Automático
4.
Stroke Vasc Neurol ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37699726

RESUMEN

BACKGROUND: Given the swift advancements in artificial intelligence (AI), the utilisation of AI-based clinical decision support systems (AI-CDSSs) has become increasingly prevalent in the medical domain, particularly in the management of cerebrovascular disease. AIMS: To describe the design, rationale and methods of a cluster-randomised multifaceted intervention trial aimed at investigating the effect of cerebrovascular disease AI-CDSS on the clinical outcomes of patients who had a stroke and on stroke care quality. DESIGN: The GOLDEN BRIDGE II trial is a multicentre, open-label, cluster-randomised multifaceted intervention study. A total of 80 hospitals in China were randomly assigned to the AI-CDSS intervention group or the control group. For eligible participants with acute ischaemic stroke in the AI-CDSS intervention group, cerebrovascular disease AI-CDSS will provide AI-assisted imaging analysis, auxiliary stroke aetiology and pathogenesis analysis, and guideline-based treatment recommendations. In the control group, patients will receive the usual care. The primary outcome is the occurrence of new vascular events (composite of ischaemic stroke, haemorrhagic stroke, myocardial infarction or vascular death) at 3 months after stroke onset. The sample size was estimated to be 21 689 with a 26% relative reduction in the incidence of new composite vascular events at 3 months by using multiple quality-improving interventions provided by AI-CDSS. All analyses will be performed according to the intention-to-treat principle and accounted for clustering using generalised estimating equations. CONCLUSIONS: Once the effectiveness is verified, the cerebrovascular disease AI-CDSS could improve stroke care and outcomes in China. TRIAL REGISTRATION NUMBER: NCT04524624.

6.
iScience ; 26(8): 107459, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37599826

RESUMEN

Developing renewable energy could jointly reduce air pollution, greenhouse gas emissions, and bring air pollution-related health co-benefits. However, the temporal and sub-national distributions of investment costs and human health co-benefits from renewable energy deployment remain unclear. To investigate this gap, we linked multiple models for a more comprehensive assessment of the economic-environmental-health co-benefits of renewable energy development in China. The results show that developing renewable energy can avoid 0.6 million premature mortalities, 151 million morbidities, and 111 million work-loss days in 2050. Meanwhile, the human health and economic co-benefits vary substantially across regions in China. Renewable energy can undoubtedly bring health and economic co-benefits. Nevertheless, the economic benefits lag considerably behind the high initial investment cost, first negative in 2030 (-0.6 trillion Yuan) and then positive in 2050 (2.9 trillion Yuan). Hence, renewable energy deployment strategy must be carefully designed considering the regional disparities.

7.
Environ Sci Technol ; 57(39): 14589-14601, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37585923

RESUMEN

Sea ice (including overlying snow) is a dynamic interface between the atmosphere and the ocean, influencing the mercury (Hg) cycling in polar oceans. However, a large-scale and process-based model for the Hg cycle in the sea ice environment is lacking, hampering our understanding of regional Hg budget and critical processes. Here, we develop a comprehensive model for the Hg cycle at the ocean-sea ice-atmosphere interface with constraints from observational polar cryospheric data. We find that seasonal patterns of average total Hg (THg) in snow are governed by snow thermodynamics and deposition, peaking in springtime (Arctic: 5.9 ng/L; Antarctic: 5.3 ng/L) and minimizing during ice formation (Arctic: 1.0 ng/L, Antarctic: 0.5 ng/L). Arctic and Antarctic sea ice exhibited THg concentration peaks in summer (0.25 ng/L) and spring (0.28 ng/L), respectively, governed by different snow Hg transmission pathways. Antarctic snow-ice formation facilitates Hg transfer to sea ice during spring, while in the Arctic, snow Hg is primarily moved through snowmelt. Overall, first-year sea ice acts as a buffer, receiving atmospheric Hg during ice growth and releasing it to the ocean in summer, influencing polar atmospheric and seawater Hg concentrations. Our model can assess climate change effects on polar Hg cycles and evaluate the Minamata Convention's effectiveness for Arctic populations.

8.
Water Res ; 243: 120390, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37516080

RESUMEN

Riverine processes are crucial for the biogeochemical cycle of mercury (Hg). The Yangtze River, the largest river in East Asia, discharges a substantial amount of Hg into the East China Sea. However, the influencing factors of the Hg budget and its recent trends remain unclear. This study quantitatively analyzed the total Hg concentration (THg) in suspended particulate matter (SPM) in the Yangtze River and calculated the Hg budget in 2018 and 2021. The results showed that the total Hg concentrations varied substantially along the river, with concentrations ranging from 23 to 883 µg/kg in 2018 and 47 to 146 µg/kg in 2021. The average Hg flux to China Sea in 2018 and 2021 were approximately 10 Mg/yr, lower than in 2016 (48 Mg/yr). Over 70% of the SPM was trapped in the Three Gorges Dam (TGD), and 22 Mg/yr of Hg settled in the TGD in 2018 and 10 Mg/yr in 2021. Hg fluxes in the Yangtze River watershed were driven by various factors, including decreased industrial emissions, increased agriculture emissions, and decreased soil erosion flux. We found that in the upper reach of the Yangtze River changed from sink to source of Hg possibly due to the resuspension of sediments, which implies that the settled sediments could be a potential source of Hg for downstream. Overall, emission control policies may have had a positive impact on reducing Hg flux to the East China Sea from 2016 to 2021, but more efforts are needed to further reduce Hg emissions.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Mercurio/análisis , Material Particulado , Monitoreo del Ambiente/métodos , China , Ríos , Contaminantes Químicos del Agua/análisis
9.
Sci Total Environ ; 892: 164691, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37301400

RESUMEN

Understanding the spatial and temporal variations of atmospheric mercury (Hg) in the marine boundary layer could advance our knowledge on ocean evasion of Hg. Here, we conducted continuous measurements of total gaseous mercury (TGM) in the marine boundary layer during a round-the-world cruise from August 2017 to May 2018. We observed the highest and lowest TGM concentrations in Southern Indian Ocean (1.29 ± 0.22 ng m-3) and Southern Atlantic Ocean (0.61 ± 0.28 ng m-3), respectively. During the daytime, enhanced TGM was observed with the diurnal amplitude difference reaching its maximum in the range of 0.30-0.37 ng m-3 in Southern Indian Ocean and Southern Ocean. The positive correlation between TGM (R2 = 0.68-0.92) and hourly solar radiation in each ocean suggested that the daytime enhanced TGM was likely driven by Hg photoreduction in seawater, after excluding the influence of other meteorological factors. The diurnal amplitude of TGM in the marine boundary layer might be impacted by the microbial productivity and the ratio of ultraviolet radiation. Our study highlights that ocean acts as a net TGM source during the daytime in the Southern Hemisphere and aqueous photoreduction process may play an important role in the biogeochemical cycling of Hg.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Mercurio/análisis , Rayos Ultravioleta , Monitoreo del Ambiente , Agua de Mar , Océano Índico , Gases/análisis , Contaminantes Atmosféricos/análisis
10.
PNAS Nexus ; 2(5): pgad128, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37228509

RESUMEN

Mercury (Hg) is a strong neurotoxin with substantial dangers to human health. Hg undergoes active global cycles, and the emission sources there of can also be geographically relocated through economic trade. Through investigation of a longer chain of the global biogeochemical Hg cycle from economic production to human health, international cooperation on Hg control strategies in Minamata Convention can be facilitated. In the present study, four global models are combined to investigate the effect of international trade on the relocation of Hg emissions, pollution, exposure, and related human health impacts across the world. The results show that 47% of global Hg emissions are related to commodities consumed outside of the countries where the emissions are produced, which has largely influenced the environmental Hg levels and human exposure thereto across the world. Consequently, international trade is found to enable the whole world to avoid 5.7 × 105 points for intelligence quotient (IQ) decline and 1,197 deaths from fatal heart attacks, saving a total of $12.5 billion (2020 USD) in economic loss. Regionally, international trade exacerbates Hg challenges in less developed countries, while resulting in an alleviation in developed countries. The change in economic loss therefore varies from the United States (-$4.0 billion) and Japan (-$2.4 billion) to China (+$2.7 billion). The present results reveal that international trade is a critical factor but might be largely overlooked in global Hg pollution mitigation.

11.
Sci Total Environ ; 882: 163646, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37094685

RESUMEN

Methylmercury is a neurotoxin that is biomagnified in marine food webs. Its distribution and biogeochemical cycle in Antarctic seas are still poorly understood due to scarce studies. Here, we report the total methylmercury profiles (up to 4000 m) in unfiltered seawater (MeHgT) from the Ross Sea to the Amundsen Sea. We found high MeHgT levels in oxic unfiltered surface seawater (upper 50 m depth) in these regions. It was characterized by an obviously higher maximum concentration level of MeHgT (up to 0.44 pmol/L, at a depth of 3.35 m), which is higher than other open seas (including the Arctic Ocean, the North Pacific Ocean and the equatorial Pacific), and a high MeHgT average concentration in the summer surface water (SSW, 0.16 ± 0.12 pmol/ L). Further analyses suggest that the high phytoplankton mass and sea-ice fraction are important drivers of the high MeHgT level that we observed in the surface water. For the influence of phytoplankton, the model simulation showed that the uptake of MeHg by phytoplankton would not fully explain the high levels of MeHgT, and we speculated that high phytoplankton mass may emit more particulate organic matter as microenvironments that can sustain Hg in-situ methylation by microorganisms. The presence of sea-ice may not only harbor a microbial source of MeHg to surface water but also trigger increased phytoplankton mass, facilitating elevation of MeHg in surface seawater. This study provides insight into the mechanisms that impact the content and distribution of MeHgT in the Southern Ocean.


Asunto(s)
Compuestos de Metilmercurio , Compuestos de Metilmercurio/análisis , Fitoplancton , Regiones Antárticas , Cubierta de Hielo , Agua de Mar/química , Océanos y Mares , Agua
12.
Environ Sci Technol ; 57(16): 6563-6572, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37045790

RESUMEN

Marine fish is an excellent source of nutrition but also contributes the most to human exposure to methylmercury (MMHg), a neurotoxicant that poses significant risks to human health on a global scale and is regulated by the Minamata Convention. To better predict human exposure to MMHg, it is important to understand the trophic transfer of MMHg in the global marine food webs, which remains largely unknown, especially in the upper trophic level (TL) biota that is more directly relevant to human exposure. In this study, we couple a fish ecological model and an ocean methylmercury model to explore the influencing factors and mechanisms of MMHg transfer in marine fish food webs. Our results show that available MMHg in the zooplankton strongly determines the MMHg in fish. Medium-sized fish are critical intermediaries that transfer more than 70% of the MMHg circulating in food webs. Grazing is the main factor to control MMHg concentrations in different size categories of fish. Feeding interactions affected by ecosystem structures determine the degree of MMHg biomagnification. We estimate a total of 6.1 metric tons of MMHg potentially digested by the global population per year through marine fish consumption. The model provides a useful tool to quantify human exposure to MMHg through marine fish consumption and thus fills a critical gap in the effectiveness evaluation of the convention.


Asunto(s)
Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Humanos , Cadena Alimentaria , Ecosistema , Bioacumulación , Zooplancton , Peces , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos
13.
Environ Int ; 174: 107904, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37012193

RESUMEN

The vegetation uptake of atmospheric elemental mercury [Hg(0)] and its subsequent littering are critical processes of the terrestrial Hg cycles. There is a large uncertainty in the estimated global fluxes of these processes due to the knowledge gap in the underlying mechanisms and their relationship with environmental factors. Here, we develop a new global model based on the Community Land Model Version 5 (CLM5-Hg) as an independent component of the Community Earth System Model 2 (CESM2). We explore the global pattern of gaseous elemental Hg [Hg(0)] uptake by vegetation and the spatial distribution of litter Hg concentration constrained by observed datasets as well as its driving mechanism. The annual vegetation uptake of Hg(0) is estimated as 3132 Mg yr-1, which is considerably higher than previous global models. The scheme of dynamic plant growth including stomatal activities substantially improves the estimation for global terrestrial distribution of Hg, compared to the leaf area index (LAI) based scheme that is often used by previous models. We find the global distribution of litter Hg concentrations driven by vegetation uptake of atmospheric Hg(0), which are simulated to be higher in East Asia (87 ng/g) than in the Amazon region (63 ng/g). Meanwhile, as a significant source for litter Hg, the formation of structural litter (cellulose litter + lignin litter) results in a lagging effect between Hg(0) deposition and litter Hg concentration, implying the buffering effect of vegetation on the air-land exchange of Hg. This work highlights the importance of vegetation physiology and environmental factors in understanding the vegetation sequestration of atmospheric Hg globally, and calls for greater efforts to protect forests and afforestation.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Mercurio/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Bosques , Hojas de la Planta
14.
Ambio ; 52(5): 853-876, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36988895

RESUMEN

Past and present anthropogenic mercury (Hg) release to ecosystems causes neurotoxicity and cardiovascular disease in humans with an estimated economic cost of $117 billion USD annually. Humans are primarily exposed to Hg via the consumption of contaminated freshwater and marine fish. The UNEP Minamata Convention on Hg aims to curb Hg release to the environment and is accompanied by global Hg monitoring efforts to track its success. The biogeochemical Hg cycle is a complex cascade of release, dispersal, transformation and bio-uptake processes that link Hg sources to Hg exposure. Global change interacts with the Hg cycle by impacting the physical, biogeochemical and ecological factors that control these processes. In this review we examine how global change such as biome shifts, deforestation, permafrost thaw or ocean stratification will alter Hg cycling and exposure. Based on past declines in Hg release and environmental levels, we expect that future policy impacts should be distinguishable from global change effects at the regional and global scales.


Asunto(s)
Ecosistema , Mercurio , Animales , Humanos , Mercurio/toxicidad , Mercurio/análisis , Peces , Monitoreo del Ambiente
15.
Nat Commun ; 14(1): 1372, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914656

RESUMEN

Marine plastic pollution poses a potential threat to the ecosystem, but the sources and their magnitudes remain largely unclear. Existing bottom-up emission inventories vary among studies for two to three orders of magnitudes (OMs). Here, we adopt a top-down approach that uses observed dataset of sea surface plastic concentrations and an ensemble of ocean transport models to reduce the uncertainty of global plastic discharge. The optimal estimation of plastic emissions in this study varies about 1.5 OMs: 0.70 (0.13-3.8 as a 95% confidence interval) million metric tons yr-1 at the present day. We find that the variability of surface plastic abundance caused by different emission inventories is higher than that caused by model parameters. We suggest that more accurate emission inventories, more data for the abundance in the seawater and other compartments, and more accurate model parameters are required to further reduce the uncertainty of our estimate.

16.
Artículo en Inglés | MEDLINE | ID: mdl-36834383

RESUMEN

The environmental changes caused by coal mining activities caused disturbances to the plant, soil, and microbial health in the mining area. Arbuscular mycorrhizal fungi (AMF) play an important role in the ecological restoration of mining areas. However, it is less understood how soil fungal communities with multiple functional groups respond to coal mining, and the quantitative impact and risk of mining disturbance. Therefore, in this study, the effect of coal mining on soil microorganisms' composition and diversity were analyzed near the edge of an opencast coal-mine dump in the Shengli mining area, Xilingol League, Inner Mongolia. The response strategy of soil fungi to coal mining and the stability of arbuscular mycorrhizal fungi (AMF) in the soil fungal community were determined. Our results showed that coal mining affected AMF and soil fungi in areas within 900 m from the coal mine. The abundance of endophytes increased with the distance between sampling sites and the mine dump, whereas the abundance of saprotroph decreased with the distance between sampling sites and the mine dump. Saprotroph was the dominant functional flora near the mining area. The nodes percentage of Septoglomus and Claroideoglomus and AMF phylogenetic diversity near the mining area were highest. AMF responded to the mining disturbance via the variety and evolution strategy of flora. Furthermore, AMF and soil fungal communities were significantly correlated with edaphic properties and parameters. Soil available phosphorus (AP) was the main influencer of soil AMF and fungal communities. These findings evaluated the risk range of coal mining on AMF and soil fungal communities and elucidated the microbial response strategy to mining disturbance.


Asunto(s)
Minas de Carbón , Micorrizas , Rizosfera , Pradera , Suelo/química , Filogenia , Minería , Poaceae , Carbón Mineral , Microbiología del Suelo , Raíces de Plantas/microbiología
17.
Proc Natl Acad Sci U S A ; 120(2): e2202488120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595667

RESUMEN

Human exposure to monomethylmercury (CH3Hg), a potent neurotoxin, is principally through the consumption of seafood. The formation of CH3Hg and its bioaccumulation in marine food webs experience ongoing impacts of global climate warming and ocean biogeochemistry alterations. Employing a series of sensitivity experiments, here we explicitly consider the effects of climate change on marine mercury (Hg) cycling within a global ocean model in the hypothesized twenty-first century under the business-as-usual scenario. Even though the overall prediction is subjected to significant uncertainty, we identify several important climate change impact pathways. Elevated seawater temperature exacerbates elemental Hg (Hg0) evasion, while decreased surface wind speed reduces air-sea exchange rates. The reduced export of particulate organic carbon shrinks the pool of potentially bioavailable divalent Hg (HgII) that can be methylated in the subsurface ocean, where shallower remineralization depth associated with lower productivity causes impairment of methylation activity. We also simulate an increase in CH3Hg photodemethylation potential caused by increased incident shortwave radiation and less attenuation by decreased sea ice and chlorophyll. The model suggests that these impacts can also be propagated to the CH3Hg concentration in the base of the marine food web. Our results offer insight into synergisms/antagonisms in the marine Hg cycling among different climate change stressors.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Humanos , Mercurio/análisis , Agua de Mar , Cadena Alimentaria , Cambio Climático , Metilación , Contaminantes Químicos del Agua/análisis
18.
iScience ; 25(9): 104881, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36039300

RESUMEN

Artisanal and small-scale gold mining (ASGM) is the leading source of mercury (Hg), a global neurotoxin. Past research has focused on the health impacts on miners and nearby residents; here, we estimate the risk for global general populations by employing a comprehensive atmosphere-land-ocean-ecosystem and exposure-risk-valuation model framework. Our results suggest that ASGM sources contribute 12%, 10%, and 0.63% to the atmospheric Hg deposition, plankton methylmercury concentrations, and soil total Hg concentrations at present day, respectively, and cause 5.8×105 points of intelligence quotient decrements and 1,430 deaths for global general populations per year. The monetized global health impact of ASGM ($154 billion) is 1.5 times its local impact and accounts for half of the total revenue of ASGM ($319 billion). A major spatial decoupling between the health impact and economic gains is also revealed, suggesting that intervention measures such as awareness-raising, capacity-building, and technology transfer funded by the Global North are cost-effective.

19.
Environ Pollut ; 307: 119588, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35688392

RESUMEN

Mercury (Hg) stable isotope analysis has become a powerful tool to identify Hg sources and to understand its biogeochemical processes. However, it is challenging to link the observed Hg isotope fractionation to its global cycling. Here, we integrate source Hg isotope signatures and process-based Hg isotope fractionation into a three-dimensional isotope model based on the GEOS-Chem model platform. Our simulated isotope compositions of total gaseous Hg (TGM) are broadly comparable with available observations across global regions. The isotope compositions of global TGM, potentially distinguishable over different regions, are caused by the atmospheric mixture of anthropogenic, natural, and re-emitted Hg sources, superimposed with competing processes, notably gaseous Hg(0) dry deposition and Hg redox transformations. We find that Hg(0) dry deposition has a great impact on the isotope compositions of global TGM and drives the seasonal variation of δ202Hg in forest-covered regions. The atmospheric photo-reduction of Hg(Ⅱ) dominates over Hg(0) oxidation in driving the global Δ199Hg (and Δ201Hg) distribution patterns in TGM. We suggest that the magnitude of isotope fractionation associated with atmospheric aqueous-phase Hg(Ⅱ) reduction is likely close to aquatic Hg(Ⅱ) reduction. Our model provides a vital tool for coupling the global atmospheric Hg cycle and its isotope fractionation at various scales and advances our understanding of atmospheric Hg transfer and transformation mechanisms.


Asunto(s)
Mercurio , Atmósfera/análisis , Fraccionamiento Químico , Monitoreo del Ambiente/métodos , Gases/análisis , Isótopos/análisis , Mercurio/análisis , Isótopos de Mercurio/análisis
20.
Nat Commun ; 13(1): 1008, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197466

RESUMEN

Recent evidence shows that carbon emissions in China are likely to peak ahead of 2030. However, the social and economic impacts of such an early carbon peak have rarely been assessed. Here we focus on the economic costs and health benefits of different carbon mitigation pathways, considering both possible socio-economic futures and varying ambitions of climate policies. We find that an early peak before 2030 in line with the 1.5 °C target could avoid ~118,000 and ~614,000 PM2.5 attributable deaths under the Shared Socioeconomic Pathway 1, in 2030 and 2050, respectively. Under the 2 °C target, carbon mitigation costs could be more than offset by health co-benefits in 2050, bringing a net benefit of $393-$3,017 billion (in 2017 USD value). This study not only provides insight into potential health benefits of an early peak in China, but also suggests that similar benefits may result from more ambitious climate targets in other countries.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Dióxido de Carbono/análisis , China , Cambio Climático , Material Particulado/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...